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ABSTRACT 

Knowledge of the relaxation spectrum is important because 1) it 

provides an instrinsic characterization of the mechanical properties for  

linearly viscoelastic materials and 2) it offers a rational way to derive 

the coefficients for  a Prony o r  Dirichlet ser ies  representation of the 

relaxation modulus of importance to some engineering analyses. 

Although there a r e  several  ways of approximately determining 

the relaxation spectrum, it appears natural to examine numerical solutions 

of the definitive singular Fredholm integral equation. 

It turns out that a solution based on Simpson quadrature leads to 

an unstable solution in the sense that an increase in integration intervals 

produces a progressively worse solution which oscillates between positive 

and negative values. This difficulty may be  overcome by requiring that 

76 
This work was supported by the A i r  Force  Rocket Propulsion Laboratory, 

Edwards A i r  Force  Base under Contract A F  04(611)-9572 and the National 
Aeronautics and Space Administration, Research Contract NsG-172-60. 

$6* Graduate student, Columbia University, New York, New York, Research 
Assistant, California Institute of Technology, Pasadena, California. 



the curvature of the relaxation spectrum with respect to the relaxation 

t imes be minimized. 

and good agreement with the exact and numerically determined relaxation 

spectrum is obtained. 

determine the retardation spectrum, only the unstable solution is obtained, 

although the form of the integral equation is the same. 

behavior is attributed to  the difference in  the characteristics of the 

The method is tested on the modified power law 

However, when the same method is  used to 

This different 

relaxation and retardation spectral functions. 



INTRODUCTION 

From the standpoint of polymer physics or polymer chemistry, the 

relaxation spectrum provides an intrinsic material  characterization not 

modulated by particular laboratory test  variations. Furthermore,  it may 

be  desirable to relate molecular parameters such as chain composition and 

conformation to the spectrum rather than a particular response curve. 

While it is not always necessary from an engineering standpoint to  

determine the relaxation spectrum for s t ress  analysis problems, it is at 

t imes convenient to characterize viscoelastic material  functions by a finite 

Prony or Dirichlet ser ies  

N 

n= 1 

where R is the response to a step s t ress  or strain and R 

infinite time. Schapery [l] proposed a collocation method based on 

minimization of the square e r r o r  for the determination of the coefficients rn 

when the characteristic times T n 

transition region of the material. 

in the ser ies  (1) is increased in order to improve the smoothness of the 

representation some of the coefficients r turn out to be negative. The 

dynamic properties derived from such a ser ies  could be physically unrealistic. 

In such a case, knowledge of the spectral function would provide a rational 

means to derive from it positive coefficients by a straight forward integration. 

is the response at 
0 

a r e  chosen arbitrari ly throughout the 

It turns out that when the number of t e rms  

n 

-1- 



MATHEMATICAL PRELIMINARIES 

Because it is  not possible to devise a test  for the determination of 

the spectra, they must be calculated from material  responses measured 

in  particular test  histories. In general, the material  response R(t) can 

be  represented in  the form 

dT H(T)B ( x , ~ )  

where H(T) is the spectral function and B(x,T) is a function of relaxation 

t ime T and time measure x (time or frequency). Roesler, et. al. , [ 2 , 3 , 4 ]  

have treated the solution of (2)  in  te rms  of Fourier ser ies  synthesis with 

special application to dynamic viscoelastic responses. Twomey E5 ] and 

Philips [ 6 ] have considered the numerical solution of (2)  for the Kernel 

B(x,T) = e 

solution reduces to the determination of the Laplace inverse of an experi- 

mentally determined function. 

computation is that the solution of the integral equation is not stable 

under reasonable perturbations [ 7 1 . This instability manifests itself in  

progressively worse solutions a s  one attempts to calculate the function at 

more  and more points in the sense that the solution oscillates with ever 

wider excursions about the - -presumably smooth- - exact solution. 

- 
In this case the integral is of the Laplace type and its 

The special difficulty that a r i ses  in this 

In order to a r r ive  at a non-oscillating or meta-stable solution, it is 

possible [ 5 , 6 ]  to solve the integral equation subject t o  the smoothness 

constraint that the curvature of the solution with respect to its variable be 

minimized. To demonstrate this let us write equation (2)  in  the form 
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by virtue of the transformation y = loglOT. 

to  the integral ( 3 )  over a finite domain of T’X, one may use Simpson quadrature 

t o  write ( 3 )  a s  

Assuming that H(T) contributes 

where 

and 

N 

W.K..H. = R. I- 6. 
1 1J 1 J J 

i =, 1 

1 < j < N1 > N - -  j = integer such that 

Hi = H ( T ~ )  l < i < N  - -  
R = R(xj) 1 < j ’ < N 1  - -  > N  

K. = log 10 B(x -ri) 
j 

l j  e j’ 
W, = Simpson quadrature coefficients 

, , .......... - 3 ’ 7  
1 -  4 2 1 

{ p -  - 

In principle, one would like to  solve (4) with e r ro r s  8 = 0. One finds, 
j- 

-1 however, that the inverse [A] of the matrix 

= W . K .  
1 i j  [A] = Aij  (5) 

becomes more ill conditioned a s  its size N increases [ 7 ] i f  B(x, T )  has 

exponential character. The ill condition manifests itself in that its elements 

>X 
Practically speaking, it has been found that approximately two decades 

t o  either side of the transition region is sufficient. 
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alternate in size and become very large. In t e rms  of the solution Hi this 

means that small changes in the R .  may result in  large  changes i n  the H. 
J 1 

by virtue of the relation 

To improve this situation we define the square relative e r r o r  

and the second order  difference 

a s  a measure of the curvature of H(T) with respect to T. It would be  desirable 

to minimize the square e r ro r  s with respect to the numbers H.. If the 
1 

curvature of the function H(T) were  known, this would lead to the well known 

variational problem with a constraint which can be treated by the method of 

Lagrange multipliers. Since the curvature i s  not known, one might still  

expect to obtain an  improvement by minimizing the linear combination 

and t reat  X a s  an unknown constant to be chosen more o r  l e s s  arbitrari ly 

rather than through prescription of the curvature constraint. In effect one 

minimizes thus a l inear combination of the square e r r o r  and the local 



curvature*. Under consideration of (4) and the definition (5), the minimization 

of ( 9 )  
aF(H.) 

1 = O  j = l , 2 , 3 , 4  ,.... N aHi 

leads to 

o r  

N A .  c 
- t x  

j = 1  R 2  j 

jk 

R 2  j =  1 j 

A - 
R Hi = A *kAki J + I S k i  

j 

where Ski represents the symmetric banded matrix 

1 - 2  1 0  0 0 ,  0 

-2 5 - 4  1 0  0 .  0 

1 - 4  6 - 4  1 0 .  0 

O 1 - 4  6 - 4  1 .  0 

O 0 0 1 - 4  6 - 4  1 

0 0 0 0 1 - 4  5 - 2  

0 0 0 0 0 1 - 2 1  

This may be written more  compactly in  matrix form as 

[MI (H} = 

:;< 
Some further improvements may be obtained i f  for smooth functions H(T) 

the curvature is treated less  locally by writing 

N 

{Hit, - 2H. 1 -t- Hi-2f 
i = l  
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with 
*1 . 

A 

Mki = Aki -25 t x Ski 
j = l  R 2  j 

which equation has the formal solution 
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SAMPLE CALCULATIONS FOR THE RELAXATION MODULUS 

In order to tes t  the solution method, it is necessary to  obtain an 

exact solution of a typical response function for comparison. 

purpose we have chosen the function 

For this 

which equation has a s  the solution the modified power law for the relaxation 

modulus 

with E and E the glassy and equilibrium modulus, respectively. g e 

In Figure 1 we show a comparison of results using (14) as the tes t  

data at N1 = 43 points to calculate HIT) a t  N = 39 points, for  different values 

of the smoothing factor A. If the curvature constraint is eliminated ( A = O )  so 

that the procedure reduces to  one of minimizing the square e r ror ,  the 

solution oscillates considerably while even a small  value of X improves the 

s oluti on con side r ably. 

Another factor which influences the solution is the range of relaxation 

times. This range must be large enough to include the range over which 

the spectrum is essentially non-zero, yet one may not be too l iberal  in  this 

choice, particularly at small values for T.  

the behavior of the inverse of the matrix [ M] , equation (13). 

the function R(t) has a plateau and the problem becomes one of determining 

The reason for  this limitation is  

In this region 
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locally the solution fo r  H(T) which renders R(t)  nearly a constant. 

solution is very sensitive to round-off e r ro r s  in EM] 

of the prescribed values of R(t). 

determined functions R(t)  it may be necessary to  locally smooth the data 

This 

and the accuracy -1 

Indeed, in  the case of experimentally 

numerically . 
-6 Figure 2 gives a comparison of the numerical solution ( X  = 10 

with the exact one along with two approximations of the Widder-Post formula. 

) 

Note that although the approximate solutions a r e  close t o  the exact one to 

the right of the maximum where the numerical solution is locally less  

adequate though close on the average. The latter compares very well with 

the exact solution near the peak, whereas the approximate solutions achieve 

peak values considerably lower than either of the other solutions. It appears 

thus that a combination of the two solution methods might give good results. 

A calculation of the e r ro r  as presented in  Figure 3 shows further that the 

numerical soldtion has a nearly vanishing mean e r r o r  while the two approxi- 

mations have small but constant errors .  

-8 - 



APPLICATION TO CREEP COMPLIANCE 

The creep compliance may be written in spectral form as 

or alternately 

R'(t) D - D (t) = (.) - 
e CrP T 

0 

dT 

Equation (17) is of the same form a s  (14) and could, 

(T) 7 as the 1% time elastic compliance and D the 
g 

glassy compliance. 

therefore in  principle, be solved in  the same way a s  before. 

tes t  case we have chosen the mathematical relation 

A s  a first 

1 
crep D 

which, physically speaking is only an approximation, E 

by the power law (14) 

(7) being given r el 

(t) = E t R(T) Erel e 

The solution to (17) is shown as a strongly unstable, oscillating function in 

Figure 4; no variation of the smoothness coefficient X changed the character 

of the solution. 

for the equivoluminal composition of Solithane 11 3 [ 81 with the same 

A second attempt was made using the measured properties 

result  of an unstable solution. Inasmuch as the integral qwt i a s  (14) and (17)  

a r e  the same and the function R(t) decreases in both cases monotonically 
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with time in a very similar manner, the distinction between solvable and 

unsolvable equations may be rather fine. 

relaxation spectra increase rapidly with T and decrease slowly after the 

peak is passed whereas the converse is t rue f o r  the retardation 

spectrum. 

numerical inversion scheme presented here, it appears that the 

determination of the relaxation spectra is feasible and is not feasible 

i f  the spectrum has the characteristics of the retardation spectrum. 

It is generally accepted that 

From the standpoint of the cited experiments with the 
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CONCLUSION 

We have attempted to a u t  ornate the determination of spectral 

distribution functions from experimental data using relatively simple 

numerical techniques. 

solution of the singular integral equations always leads to unstable 

solutions the introduction of a smoothness constraint leads to  

acceptable solutions i f  the spectra a r e  of the relaxation type but not if 

they a r e  of the retardation type. 

solution may not be much better than that of standard approximate 

Although the straight forward numerical 

While the quality of the numerical 

methods, it should be borne in  mind that the current method lends itself, 

where applicable, t o  routine calculation and circumvents ,to a large 

degree the guess work and subjective interpretation associated with 

other approximate methods. 
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